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Abstract

One of the goals of gravitational-wave astrophysics is to infer the number and properties of the formation channels
of binary black holes (BBHs); to do so, one must be able to connect various models with the data. We explore
benefits and potential issues with analyses using models informed by population synthesis. We consider five
possible formation channels of BBHs, as in Zevin et al. (2021b). First, we confirm with the GWTC-3 catalog what
Zevin et al. (2021b) found in the GWTC-2 catalog, i.e., that the data are not consistent with the totality of observed
BBHs forming in any single channel. Next, using simulated detections, we show that the uncertainties in the
estimation of the branching ratios can shrink by up to a factor of ∼1.7 as the catalog size increases from 50 to 250,
within the expected number of BBH detections in LIGO–Virgo–KAGRAʼs fourth observing run. Finally, we show
that this type of analysis is prone to significant biases. By simulating universes where all sources originate from a
single channel, we show that the influence of the Bayesian prior can make it challenging to conclude that one
channel produces all signals. Furthermore, by simulating universes where all five channels contribute but only a
subset of channels are used in the analysis, we show that biases in the branching ratios can be as large as ∼50%
with 250 detections. This suggests that caution should be used when interpreting the results of analyses based on
strongly modeled astrophysical subpopulations.

Unified Astronomy Thesaurus concepts: Gravitational-wave sources (677); Gravitational-wave astronomy (675);
Black holes (162); Stellar mass black holes (1611); Astrophysical black holes (98); Compact binary stars (283)

1. Introduction

Gravitational waves (GWs) emitted by the mergers of
compact objects, neutron stars and black holes, encode the
properties of their sources including masses, spins, and
distance. When one has a large enough data set, information
can be combined from the detected sources to infer properties
of the underlying astrophysical process—or processes—that
created them. Nearly 100 compact binary coalescences6 (the
large majority of which are BBHs) have been revealed in the
data of ground-based GW detectors, LIGO (LIGO Scientific
Collaboration et al. 2015) and Virgo (Acernese et al. 2015), up
to their third observing run (O3) (The LIGO Scientific
Collaboration et al. 2021b; Olsen et al. 2022; Nitz et al.
2023), allowing this type of analysis to be performed. The
formation scenarios for compact binaries can be broadly
separated in two categories: isolated evolution in the galactic
field and dynamical assembly in dense environments such as
clusters and AGN disks (see, e.g., Mapelli 2021; Mandel &
Farmer 2022, for reviews). The overall data set might contain
BBHs formed from a combination of these and other
evolutionary pathways.

Ideally, one would like to fully characterize any astro-
physical formation channels that contribute sources, as well as
their relative abundances (branching ratios). In practice, several
approaches have been proposed and followed in the literature.
They all have merits and shortcomings, and we quickly review
them here, focusing on BBHs, which are the topic of our work.

1. Heuristic models—The most straightforward analyses
rely on heuristic parametric distributions to describe the
astrophysical distributions of black hole parameters. For
example, the primary (i.e., most massive) black hole mass
distribution can be modeled as a mixture model of a
power law and a Gaussian (the power law +
peakmodel of Abbott et al. 2023, originally introduced
by Talbot & Thrane 2018); the spin orientation distribu-
tion as a mixture model of an isotropic component and a
component nearly aligned with the orbital angular
momentum (Talbot & Thrane 2017; Vitale et al. 2017b);
etc. The functional forms might be chosen based on
computational expediency, or they could be inspired by
reasonable astrophysical expectations (e.g., a power-law
component in the black hole mass function because
the masses of progenitor stars are distributed that
way; Kroupa 2001). Meanwhile, mixture models might
allow for different subpopulations to be accounted for.
The main potential shortfall of this approach is that, if the
models are very strong, the resulting posteriors might
actually be model-driven, especially for hard-to-measure
parameters. This has been shown, for example, in the
context of the spin magnitude measurement (Galaudage
et al. 2021; Roulet et al. 2021; Callister et al. 2022) and
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the spin orientation (Vitale et al. 2022a). On the positive
side, if a parameter can be reliably measured, it often has
a clear connection with a meaningful astrophysical
quantity (e.g., the slope of a mass power law). Heuristic
models also allow correlations between parameters to be
probed in a straightforward manner (Callister et al. 2021;
Adamcewicz & Thrane 2022; Biscoveanu et al. 2022;
Vitale et al. 2022a; Baibhav et al. 2023).

2. Flexible models—Flexible model approaches have been
proposed as a way of avoiding the risk of forcing features
into the data. In such models, 1D posterior distributions
(usually fully marginalized, e.g., p(m1|d)), are modeled as
splines, Gaussian processes, or using autoregression
(Mandel et al. 2017; Vitale et al. 2019; Tiwari 2021,
2022; Veske et al. 2021; Edelman et al. 2022; Edelman
et al. 2023; Golomb & Talbot 2022; Rinaldi & Del
Pozzo 2022; Callister & Farr 2023). While these
approaches are less likely to impose stringent features
into the posteriors (though see, e.g., Farah et al. 2023),
the number of unknown parameters is typically larger
than for heuristic models, and the model parameters are
not usually associated to any specific astrophysical
quantity. Furthermore, these methods are not well suited
to disentangle subpopulations, and are instead better
suited to measuring the overall distribution of parameters.

3. Astrophysically informed models—Finally, one may use
models obtained directly from the output of population
synthesis. Given a set of initial conditions and choices for
uncertain stellar, binary, and environmental physical
parameters, such models make predictions for the
anticipated underlying and detectable distribution of
compact binaries. These models can be parameterized
directly in terms of physically meaningful quantities (e.g.,
the onset and evolution of binary mass transfer phases,
the strength of supernova natal kicks, the efficiency of
angular momentum transport), and correlations between
parameters are automatically built in the models, both of
which are very strong positive factors. In practice, the
range of variations in physical uncertainties, as well as
the number and complexity of the differing channels one
considers, are often limited by the availability of
numerical simulations that thoroughly explore the varia-
tion of the output (e.g., distribution of spin magnitude in
the population) when one of the physical input para-
meters (e.g., efficiency of common envelope evolution) is
varied. This is due to the fact that most population
synthesis algorithms require significant computational
resources to run, which implies that they cannot be
evaluated “on the fly” for any value of their input
parameters, but must instead, for example, be evaluated
on a sparse grid. Recent efforts have begun to more
thoroughly explore compact binary population predic-
tions for individual formation channels over an expansive
array of physical and environmental uncertainties (e.g.,
Broekgaarden et al. 2022). Consideration of multiple
formation channels simultaneously and self-consistently
proves more difficult, given the diversity of codebases
needed to model different channels and the unique
physics that affects compact binary populations from
each channel. The most expansive multichannel analysis
to date was performed in Zevin et al. (2021a), who
considered five possible formation channels (see

Section 2.1 below), parameterized by the spin of quasi-
isolated black holes at birth (a proxy for the efficiency of
angular momentum transport in massive stars) and the
efficiency of the common envelope ejection. By analyz-
ing the 45 confident BBH sources of the penultimate
(GWTC-2) LIGO–Virgo–KAGRA collaboration (LVK)
catalog, Zevin et al. (2021a) found that the data required
more than a single formation channel in order to explain
the diversity of GW events and the distribution of
parameters of the detected binaries. They also found that
the data preferred small natal black hole spins, consistent
with the fact that most of the LVK BBHs have small spin
magnitudes.

In this paper, we analyze both merits and shortcoming of
approaches based on models informed by the output of
population synthesis codes. First, we repeat the analysis of
Zevin et al. (2021a) on the latest LVK catalog (GWTC-3),
which comprises 69 BBH with a false-alarm rate of less than
1yr−1. We find that the model for common envelope evolution
can explain up to 95% of the BBHs in the underlying
population (while contributing up to 37% of the detect-
able BBHs).
Then, we create catalogs of simulated BBH signals with

parameters drawn from our models, for some assumed values
of the common envelope efficiency, quasi-isolated natal black
hole spins, and branching fractions across channels. We
analyze the performance of the analysis as the number of
BBH sources in the catalog increases from 50 to 250. We find
that, for channels that produce higher number of detectable
sources (and hence are proportionally more represented in the
catalog, even if the true underlying branching fractions are not
higher), the uncertainty on the underlying branching fraction
can improve by a factor of up to ∼1.7 as the number of sources
increases to 250.
Next, we study the biases that can be introduced in this

type of inference if the analysis is not using a suite of models
fully representative of what is actually realized in nature.
This problem was first indirectly shown by Franciolini et al.
(2022), who added a channel for primordial black hole
formation to those used by Zevin et al. (2021a), and obtained
that the inference on the fraction of primordial back holes
was significantly affected by which of the other channels
were included in the analysis. To do so, we generate mock
universes where each of the five channels contributes some
known fraction of the underlying population, and run the
inference excluding in turn one of the five models. We show
how this introduces biases in the inference of the remaining
four channels’ branching fractions. The channels that are
most heavily biased are the ones that can most easily produce
sources similar to the one channel excluded from the
analysis, as well as those with the lowest detection
efficiencies. Finally, we generate universes where the totality
of the BBH sources are produced by one of the five channels,
and run the analysis with the same five models. We show
that, while the natal spin can be inferred correctly, it is
usually not possible to exclude that more than one channel
contributes to the population after 100 events, a caveat to our
result from our inference on GWTC-3 data that multiple
channels contribute to both the underlying and detected BBH
population.
The rest of the paper is organized as follows: in Section 2,

we review the basics of hierarchical inference and the models
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used in this work, and apply these tools to GWTC-3ʼs BBHs.
In Section 3, we apply the method to different simulated
catalogs in the ideal scenario where models and true
populations match. In Section 4, we focus on biases in the
inference. We conclude in Section 5.

2. Hierarchical Inference on GWTC-3 Data

2.1. Hyperinference Method

We use hierarchical Bayesian inference on the branching
fractions between different astrophysical formation channels of
BBHs. Our methods mostly follow the analysis developed by
Zevin et al. (2021a), adapting their codebase, Astrophysical
Model Analysis and Evidence Evaluation (AMA  E), for our
work. Here, we outline the essentials of this method, as well as
the key differences.

We consider five different formation channels: three isolated
evolution (field) channels and two dynamical formation
channels. The common envelope (CE) (e.g., Paczynski 1976;
van den Heuvel 1976; Tutukov & Yungelson 1993; Bethe &
Brown 1998; Belczynski et al. 2002, 2016; Dominik et al.
2012; Eldridge & Stanway 2016; Stevenson et al. 2017;
Giacobbo & Mapelli 2018) and stable mass transfer (SMT)
(van den Heuvel et al. 2017; Neijssel et al. 2019; Gallegos-
Garcia et al. 2021; van Son et al. 2022) scenarios are field
channels that involve unstable and stable mass transfer,
respectively, following the formation of the first black hole.
In the chemically homogeneous evolution (CHE) channel, stars
in a close, tidally locked binary rotate rapidly, causing
temperature gradients that lead to efficient mixing of the stars’
interiors. The stars do not undergo significant expansion of the
envelope, preventing significant post-main-sequence wind
mass loss and premature merging, resulting in higher-mass
BBHs (de Mink & Mandel 2016; Mandel & de Mink 2016;
Marchant et al. 2016). Finally, the two dynamical formation
channels lead to merging black holes via strong gravitational
encounters that harden the binary in cluster cores (e.g.,
McMillan et al. 1991; Hut et al. 1992; Sigurdsson &
Phinney 1993; Portegies Zwart & McMillan 2000; Miller &
Hamilton 2002; Gültekin et al. 2006; O’Leary et al. 2006;
Fregeau & Rasio 2007; Downing et al. 2010; Samsing et al.
2014; Ziosi et al. 2014; Rodriguez et al. 2015, 2016; Antonini
& Rasio 2016; Askar et al. 2017; Samsing & Ramirez-
Ruiz 2017; Kremer et al. 2020), where heavy black holes
migrate toward due to dynamical friction (Lightman &
Shapiro 1978; Sigurdsson & Hernquist 1993); we consider
dynamical formation of BBHs in globular clusters (GCs) and
nuclear star clusters (NSCs). See Zevin et al. (2021a) for a
more detailed description of the astrophysical models con-
sidered in this work.

Each of these channels is modeled to predict the four-
dimensional distribution of the BBHs it forms with parameters

q z, , ,c eff[ ]q c= , where c is the source-frame chirp
mass, q is the mass ratio (defined to be 0< q� 1 ), χeff is the
effective dimensionless spin parameter, and z is the redshift;
these are constructed into a probability distribution using a
four-dimensional kernel density estimate (KDE) bounded by
the physical constraints of each parameter. The models also
depend on two additional parameters encoding uncertainties in
the physical prescription: χb, the dimensionless spin of a black
hole formed in quasi-isolation directly following core collapse,
and αCE, which parameterizes the efficiency of common

envelope ejection (see, e.g., Ivanova et al. 2013).7 We note that
the choice of natal black hole spin χb does not set all black
holes in a given population to merge with this exact spin,
because tidal spin-up processes (Qin et al. 2018; Zaldarriaga
et al. 2018; Bavera et al. 2021) and hierarchical mergers
(Pretorius 2005; González et al. 2007; Buonanno et al. 2008)
can increase the spin of black holes that participate in BBH
mergers. We assume these two parameters take on a grid of
discrete values (χbä [0.0, 0.1, 0.2, 0.5], αCEä [0.2, 0.5, 1.0,
2.0, 5.0]) over which we compute the models, although αCE

only affects the CE channel in our models. A plot of the
detection-weighted marginalized model KDEs for αCE= 1.0,
χb= 0.2 is shown in Figure 1 as an example. Further details,
including formation models, detection weighting, and mathe-
matical framework, can be found in Zevin et al. (2021a).
Overall, we perform hierarchical inference on seven

hyperparameters8 Λ= [β, χb, αCE], where β= [βCE, βCHE,
βSMT, βGC, βNSC] are the five astrophysical formation channel
branching fractions. The steps involved in performing
hierarchical inference on GW populations given a set of
posterior samples ( q z, , ,c eff[ ]q c= in our case) for Nobs

sources in the presence of selection effects have been
thoroughly discussed in the literature (Farr et al. 2015; Mandel
et al. 2019; Thrane & Talbot 2019; Vitale et al. 2022b; Abbott
et al. 2023), and we therefore do not review them here. As in
Zevin et al. (2021a), we use a broad, agnostic prior for the
hyperparameters: a flat symmetric Dirichlet prior for β and a
uniform prior for χb and αCE over the allowed discrete values.
The outputs of the inference are samples of the hyperposterior
p(β|χb, αCE) over the grid of hypermodels (i.e., allowed values
of χb and αCE), from which we can compute the marginalized
hyperposterior p(β) as well as the Bayes factors BFb

a of
hypermodel a compared to hypermodel b. Bayes factors >1
indicate that model a is more supported than model b, with
BF 10 100b

a ( )> indicating strong (decisive) support for model
a over model b (Kass & Raftery 1995).
We also recover the detectable branching fractions detb ,

which represent the fraction of detectable BBHs originating
from each channel. These are computed by rescaling each
underlying branching fraction by its detection efficiency,
defined as P p dj j

,
det

,b CE b CE( ) ( ∣ )ò q q qx m=c a c a , where Pdet ( )q is
the probability of detecting a BBH with parameters θ and
p j

,( ∣ )q mc a is the probability of formation channel j producing a
BBH with parameters θ, dependent on the model μj and choice
of physical prescription χb and αCE (Zevin et al. 2021a). We
apply this method to both real (Section 2.2) and simulated
(Sections 3 and 4) BBH data.

2.2. Application to GWTC-3

We extend the work of Zevin et al. (2021a) by applying the
inference to confident BBH detections up to the second half of
the third observing run (O3b). We use the publicly released priors
and posterior samples from the GWTC-2.1 (The LIGO Scientific

7 The choice of these hyperparameters come from the availability of self-
consistent astrophysical models; in particular, the globular cluster simulations
were run on a grid of discrete values in χb, and αCE variations only affect the
parameter distributions of the CE model, which incurred less computational
cost to explore additional variations than other models. See Zevin et al. (2021a)
for further discussion on the reasoning and motivations for the physical
prescriptions considered.
8 Due to the restriction ∑iβi = 1 (the branching fractions must add up to 1),
we technically only perform inference on six hyperparameters.
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Collaboration et al. 2021a) and GWTC-3 (The LIGO Scientific
Collaboration et al. 2021b) analyses; detection probabilities are
calculated for the LIGO-Hanford, LIGO-Livingston, and VIRGO
network operating at midhighlatelow sensitivities (Abbott
et al. 2018). There are two key differences between our analysis
and that of Zevin et al. (2021a). First, we apply a more stringent
detection threshold of FAR� 1 yr−1 (Abbott et al. 2023);
therefore, events GW190424_180648, GW190514_065416, and
GW190909_114149, which were used in the previous analysis,
are now excluded. Second, we evaluate the prior at the posterior
points analytically rather than by constructing a KDE from prior
samples; for further discussion on this point, see Appendix A.
Finally, as in Zevin et al. (2021a), we opt to exclude GW190521
and GW190814 from the analysis, as their posteriors extend
significantly to regions of our model KDEs with little to no
support. Furthermore, in the case of GW190814, it is uncertain
whether this system is comprised of two black holes or a neutron
star and a black hole. We find that the inclusion of GW190521
does not significantly affect our results; see Franciolini et al.
(2022) for an analysis that includes GW190521. Overall, we do
hierarchical inference on 68 BBHs, compared to the 45 BBHs
considered in Zevin et al. (2021a). Unless otherwise specified, we
report results as median and 90% symmetric credible intervals.

Figure 2 shows the posterior distributions on the underlying
branching fraction β, including detections from O3b; the same
plot but for the detectable branching fractions can be found in
Appendix B. We find 90 %CE 11

5.0b = -
+ , 0.6 %CHE 0.5

1.0b = -
+ ,

3.7 %GC 3.4
7.6b = -

+ , 1.1 %NSC 0.8
1.7b = -

+ , and 4.0 %SMT 3.2
6.5b = -

+ ,
indicating strong support for the CE channel dominating the
underlying astrophysical population in our set of models.

However, there is comparable contribution from all five
channels to the detectable BBH population: 21 %CE

det
10
16b = -

+ ,
6.9 %CHE

det
5.2
8.5b = -

+ , 24 %GC
det

21
26b = -

+ , 20 %NSC
det

13
17b = -

+ , and
24 %SMT

det
19
24b = -

+ . We attribute this difference to the fact that,
compared to other channels, the CE channel produces less
massive black holes distributed at higher redshifts, which
therefore are harder to detect; see Figure 1. With 90% (99%)
credibility, no single formation channel contributes to more
than 49% (61%) of the detectable BBH population. Addition-
ally, over 98% of posterior samples have significant
( 10detb > %) contributions from three or more different
formation channels. Overall, we find that the CE channel
contributes the most to the underlying BBH population;
however, as we discuss in Section 4, the posterior for βCE is
also the most uncertain and prior dominated. We additionally
find that a mix of formation channels contributes to the
detectable BBH population. These results, as well as the overall
shapes of the branching fraction posteriors, are consistent with
the analysis with GWTC-2 data (Zevin et al. 2021a), which
found 71 %CE 60

19b = -
+ and that no single channel contributed to

more than 70% of the detectable BBH population with 99%
confidence. No strong correlations are apparent upon examin-
ing a corner plot of the branching fractions.
Turning to the selection of physical prescription hyperpara-

meters χb and αCE, we find no posterior support for models
with χb> 0.1; there is no significant preference between the
χb= 0.0 and χb= 0.1 models, with BF 1.180.0

0.1
b

b =c
c

=
= . We favor

high common envelope efficiencies, with BF 2491.0
5.0

CE
CE =a

a
=
= ,

and strongly disfavor low common envelope efficiencies, with

Figure 1. Detection-weighted (top) and underlying (bottom) marginalized KDEs of our four BBH parameters, q z, , ,c eff[ ]q c= , for our five different formation
channels with αCE = 1.0, χb = 0.2. It is worth noting the unique features of each formation channel and their dependence on the chosen model χb = 0.2: while the χeff

marginalized KDE for field channels CE and SMT peak at χeff = χb = 0.2, with the CE channel having support for larger χeff through tidal spin-up, dynamical
channels GC and NSC peak at χeff = 0, due to the independently isotropically oriented spins of the BBHs with symmetric wings to more extreme χeff values from
hierarchical mergers, and the CHE channel has χeff exceeding χb = 0.2, due to significant tidal spin-up of both black hole progenitors. The first row is the same as the
third row of Figure 1 from Zevin et al. (2021a), except here we have calculated the detection weighting with O4 sensitivities, and the black ticks show the median
values of the parameter estimation posteriors for each event in GWTC-2, while the green and red ticks mark the events added to and removed from, respectively, this
updated analysis that includes GWTC-3.
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BF 5 101.0
0.2 5

CE
CE = ´a

a
=
= - . These results are also consistent with

Zevin et al. (2021a). The main difference is that we obtain
stronger constraints, both in singling out preferred hypermodels
and in the uncertainties (widths) of the branching fraction
hyperposteriors. We attribute this effect to the increase in
sample size from GWTC-2 to GWTC-3, as well as the
difference in method in evaluating the prior at the posterior
points during the inference; see Appendix A for further
discussion.

3. Projections for Future Catalogs

3.1. Method

Next, we perform the same inference using simulated BBH
observations in a universe where the BBH population exactly
follows our models. The motivation for this analysis is to to
quantify how uncertainties in the hyperposterior scale with the
number of observed events.

We first create a mock “universe,” i.e., a set of true values for
our hyperparameters Λ= [β, χb, αCE]. From each formation
channel j, we draw nj= βjn BBHs from the population model
p j

,b CE( ∣ )q mc a , for a total of n= 5× 104 BBHs that form our
underlying population. Next, we draw from this underlying
population, assigning extrinsic parameters (sky location and
inclination) from an isotropic distribution. For each BBH
system, we calculate its optimal signal-to-noise ratio ρopt
assuming a network consisting of LIGO-Hanford, LIGO-
Livingston, and Virgo operating at O4 low (LIGO) and high
(Virgo) sensitivities (Abbott et al. 2018; O’Reilly et al. 2022),
and keep only the mock signals with ρopt� 11; we repeat this
process until we have a mock catalog of Nobs detections. Then,
we perform parameter estimation on the Nobs BBHs. For both
the S/N calculation and parameter estimation, we use the
Bayesian inference software bilby (Ashton et al. 2019) and
the IMRPhenomXP waveform approximant (Pratten et al.
2021). Finally, we use these posterior samples for the

hierarchical inference analysis outlined in Section 2.1. For
consistency, we use the same O4 sensitivities for the detection
weighting during the inference as the above computation of
mock signal S/Ns.
The various mock universes that we use in this paper, along

with the sections in which they are discussed, are summarized
in Table 1. For this analysis, we choose a fiducial unequal
mixture of formation channels with underlying branching
fractions βCE= 40%, βCHE= 5%, βGC= 25%, βNSC= 5%,
and βSMT= 25%, quasi-isolated natal spins of χb= 0.0, and a
CE efficiency of αCE= 1.0.
To investigate the scaling of the hyperposterior with Nobs, for

each universe we repeat the inference with Nobs= 50,
Nobs= 150, and Nobs= 250. Nobs= 250 represents an estimate
on the total number of BBH detections anticipated by the end
of O4 (Weizmann Kiendrebeogo et al. 2023).

3.2. Results

In Figure 3, we plot for our chosen fiducial universe the overall
posterior distribution on the underlying branching fractions for
different values of Nobs (left column), as well as contributions (to

Figure 2. Marginalized branching fractions inferred from 68 BBHs from the cumulative GWTC-3 for each of the five formation channels. Colored curves show the
contributions from different values of χb (top row) and αCE (bottom row), marginalized over αCE and χb, respectively; the black dotted curve shows the total
contribution from all hypermodels. The log-scaling of the y-axis should be noted; the 90% symmetric credible intervals are marked by vertical lines.

Table 1
Mock Universes

Sections Nobs βCE βCHE βGC βNSC βSMT

3.2, 4.3 up to 250 40% 5% 25% 5% 25%
3.2, 4.2, 4.3 up to 250 20% 20% 20% 20% 20%
4.1 100 β = 100% for some channel

Note. True values of the branching fractions for the different universes from
which we generate our mock catalogs, along with the number of detections in
each mock catalog used in the inference and the sections in which they are
discussed. For all universes, we pick true values χb = 0.0 and αCE = 1.0,
except for the equal branching fraction universe (second row), where we use
χb = 0.2.
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scale) from the most favored values of χb and αCE (columns 2 to
5). First, we do recover the true values of β and χb.
For Nobs= 250, we find 28 %CE 21

26b = -
+ , 3.0 %CHE 1.5

2.2b = -
+ ,

40 %GC 16
18b = -

+ , 3.6 %NSC 2.1
3.1b = -

+ , and 24 %;SMT 13
16b = -

+ the
true value of the branching fraction falls within the 90%
symmetric credible interval of the posterior for all five channels.
Furthermore, χb= 0, the chosen true value for χb, is favored over
the next best model, χb= 0.1, by a Bayes factor of 3.5× 105.

Unlike χb, the model with αCE equal to the true value is not
favored, with a marginal preference for higher values
αCE= 5.0 and αCE= 2.0 over the true value αCE= 1.0 with
Bayes factors BF 8.91.0

5.0
CE
CE =a

a
=
= and BF 2.51.0

2.0
CE
CE =a

a
=
= . Because

αCE only affects the CE channel, it is not too surprising that the
inference did not decisively favor any one value, in a universe
where most detected BBHs do not come from the CE channel.
We note two possible contributing factors to favoring higher
values of αCE over the true value. If BBHs formed in the CE
channel disperse their envelopes more efficiently (i.e., have
higher values of αCE ), the resulting BBHs are

(a) Less massive, leading to lower detection efficiencies and
therefore larger measurement uncertainties for this
channel. This is because models with larger αCE have
less low-mass binaries merging within the CE itself,
leading to more low-mass BBHs being able to form and
merge (Bavera et al. 2021).

(b) Lower spinning, due to the post-CE separations being
wider for higher αCE and therefore less susceptible to
tidal spin-up (Qin et al. 2018; Zaldarriaga et al. 2018;
Bavera et al. 2021); this leads to more detections with χeff

closer to χb= 0.0, the chosen fiducial value for this
universe. In χeff space, this is a feature degenerate with
dynamical channels such as the GC channel, which also
produces BBHs with χeff≈ 0 due to the BBHs produced
having isotropic spin orientations.

This result suggests that our result in Section 2.2, that higher
common envelope efficiencies are favored, should be viewed
with some caution.
More notably, we see convergence of the hyperposteriors

toward their true values as we increase the number of
detections. First, we highlight the narrowing of the branching
fraction posteriors from the first row to the third row of
Figure 3. We quantify uncertainties in the branching fraction
posteriors by the widths of the 90% symmetric credible
intervals, and will hereafter use the two phrases interchange-
ably. These uncertainties decrease by up to 69% as we go from
50 to 250 mock events (see Table 2). The Bayes factor in favor
of the correct χb increases by nearly five orders of magnitude,
strongly selecting the true value χb= 0.0. This is illustrated by
the empty plot corresponding to the contribution from χb= 0.1
for Nobs= 250 (third row, middle column), indicating

Figure 3. Marginalized branching fraction posteriors for 50 (first row), 150 (second row), and 250 (third row) mock detections. Here, branching fraction posteriors of
different channels are plotted together as different colored lines, while contributions from different hypermodels are shown in different columns. The first column
(from the left) shows the total marginalized branching fraction; the triangles mark the credible symmetric 90% intervals. The second and third columns show the
contributions from the two values of χb (marginalized over αCE) with the most support; the fourth and fifth columns are analogous for αCE. It should be noted that the
second through fifth columns do not represent normalized probability distributions; we plot them to scale with their contribution to the total marginalized posterior in
the first column, just as with the colored curves in Figure 2. True values of the underlying branching fractions (βCE = 40%, βCHE = 5%, βGC = 25%, βNSC = 5%, and
βSMT = 25%) are shown by the vertical colored lines in the “Overall” column, where βNSC and βSMT are given small artificial offsets, while χb = 0.0 and αCE = 1.0.
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negligible support for competing values of χb. On the other
hand, the inference has increasing support for αCE= 5.0, but
even at 250 mock detections, we only weakly prefer it over the
true model αCE= 1.0.

It is worth noting that the scaling of the uncertainty with Nobs

varies significantly between formation channels. Some chan-
nels have more distinctive features in parameter space (see
Figure 1) that make them easier to distinguish during the
inference. Additionally, differences in the detection efficiencies
of different formation channels likely play a role as well.
Figure 5 shows the percent decrease in the uncertainty of
branching fraction posteriors from Nobs= 50 to Nobs= 250
against the detection efficiency of its channel ,b CExc a for our
fiducial values χb= 0.0 and αCE= 1.0. Channels with lower
detection efficiencies, most notably the CE channel, appear to
scale much more poorly with Nobs than channels with higher

detection efficiencies. Indeed, the CE channel tends to produce
lower-mass black holes at higher redshifts (due to typically
shorter delay), leading to fewer of them being detectable (see
Figure 1). We emphasize the effect of the low detection
efficiency of the CE channel: despite the fact that 40% of the
mock underlying population originates from this channel, only
2, 5, and 17 CE BBHs end up in the mock observations, out of
the 50, 150, and 250 total detections, respectively. Not only
does the βCE posterior have the largest uncertainty of all
formation channels, it also barely decreases in uncertainty as
we increase Nobs. If we instead examine how the detectable
branching fractions scale with Nobs in Figure 4, we can see that
all detectable branching fractions narrow at similar rates as we
increase Nobs from 50 (first row) to 250 (third row). Indeed, we
can see in Figure 5 that the detectable branching fractions
(dotted line) do not exhibit the dependence of the convergence

Table 2
Uncertainties in the Measurement of the Branching Fractions with Nobs Shown in Figures 3 and 4

Nobs ΔβCE ΔβCHE ΔβSMT ΔβGC ΔβNSC CE
detbD CHE

detbD SMT
detbD GC

detbD NSC
detbD BF 0.1

0.0
b
b

c
c

=
= BF 5.0

1.0
CE
CE

a
a

=
=

50 49% 11% 52% 17% 56% 17% 19% 55% 34% 49% 8.0 0.81
150 46% 6.2% 48% 9.7% 43% 6.4% 11% 47% 24% 42% 27 0.36
250 46% 3.7% 33% 5.2% 28% 4.6% 7.2% 30% 14% 25% 3.5 × 105 0.11

% change 5.9% 66% 36% 69% 49% 73% 62% 46% 60% 49%

Notes. The rightmost two columns give the Bayes factors of the true value of χb and αCE over the most favored competing value for 50, 150, and 250 mock detections
(first, second, and third rows). The rest of the table shows the underlying and detectable branching fraction uncertainties, as well as their percent changes between the
first and third rows. We note that these are credible 90% interval widths in percentage points, not percent uncertainties.

Figure 4. The same as Figure 3, except with detectable branching fractions rather than underlying.
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rate on detection efficiency that the underlying branching
fractions (solid line) have.

Already, we can see some of the difficulties that arise from
hierarchical Bayesian inference in the face of large measure-
ment uncertainties, selection effects, and degenerate features in
parameter space. This is a common theme, and we will explore
these problems in further detail in Section 4.

Finally, we repeat this analysis for a different set of
hyperparameters consisting of equal branching fractions between
all formation channels (βj= 0.2 for all j), χb= 0.2, and
αCE= 1.0 (see the second row of Table 1). We find similar
results in the convergence with Nobs. Uncertainties in the
underlying branching fraction decrease by up to 47% from
Nobs= 50 to Nobs= 250, and consistently with our previous
results, the uncertainty in βCE does not decrease. We find also
that the shrinking of the detectable branching fraction ( detb )
posterior uncertainty is more consistent across different channels
than the underlying branching fraction. Increasing Nobs causes a
strong preference for the true value of χb= 0.2; while we have
BF 1.00.1

0.2
b

b =c
c

=
= for Nobs= 50, there is no posterior support for

χb≠ 0.2 at Nobs= 150 and Nobs= 250. Similarly to the previous
example, there is no strong preference for the true value of αCE,
although it is slightly favored with BF 1.70.5

1.0
CE
CE =a

a
=
= . Figures

showing the marginalized posteriors on β and detb for this set of
hyperparameters can be found in Appendix B.

4. Biases of Population Inference

Finally, we investigate the biases that may arise when
performing hierarchical inference with the methods described
above in Section 2.1. We again refer to Table 1 for the chosen
true values of the hyperparameters that we present in subsequent
sections; we use the same method for hierarchical inference and
simulated BBH detections as outlined in Sections 2.1 and 3.1,
respectively. In Section 4.1, we perform hierarchical inference
on sources originating exclusively from each individual
formation channel and examine differences in the recovered
posteriors. In Section 4.2, we isolate the effect of the natal black
hole spin hyperparameter by comparing the posteriors of
universes with different choices of χb. In Section 4.3, we

explore the consequences of doing hierarchical inference with
incomplete information (i.e., excluding a channel from the
inference) with detections from a mixture of formation channels.
Finally, we summarize and discuss our results in Section 4.4.

4.1. Inference in Single-channel Dominated Universes

For each channel j, we perform hierarchical inference on
Nobs= 100 mock detections in a universe where the entire
underlying BBH population originates from channel j (i.e.,
βj= 1). We choose for our true values of the physical
prescription χb= 0.0 and αCE= 1.0, although the latter choice
only affects the CE-dominated universe. Figure 6 shows the
branching fraction posteriors and support for different values of
χb for each single-channel dominated universe.
In general, none of the branching fraction posteriors have

significant support for β= 1, even for the channel that is
actually producing the entirety of the BBHs. This happens
because we use a flat, symmetric Dirichlet distribution for our
prior, which results in a prior preference for a mixture of
channels rather than a single dominating channel; this is
illustrated by the gray curves in Figure 6.
The fifth percentiles of the dominating-channel branching

fraction posteriors for the CE, CHE, GC, NSC, and SMT-
dominated universes are βCE= 94%, βCHE= 62%, βGC= 41%,
βNSC= 31%, and βSMT= 51%, respectively. The degree to
which we underestimate the contribution from the dominating
channel varies significantly depending on the channel. We again
highlight the effect of detection efficiency. As we saw in
Figure 5, the CE, GC, and SMT channels have the lowest
detection efficiencies, especially the CE channel. Across the
different universes under consideration, βCE, βGC, and βSMT

(first, middle, and last columns, respectively) have larger
uncertainties that compete with and take away from the
branching fraction posterior of the dominating channel; because
of the lower detection efficiencies of these channels, it is difficult
to discern whether this channel is nonexistent or if its
contribution to the full set of detected observations is minor.
The case of βCE is particularly severe: as it does not strongly
deviate from the prior, the 95th percentile for βCE is greater than
32% in all universes for which there is no CE contribution to the
underlying population. The CE-dominated universe (first row)
does not suffer from this effect; as a result, only in that universe
do we recover with narrow precision that the dominating channel
is indeed dominating. In the opposite case, the NSC channel has
the highest detection efficiency. In the NSC-dominated universe
(fourth row), the median value of the βNSC posterior is less than
0.5, with large contributions to the BBH population from the
channels with lower detection efficiencies (βCE, βGC, and βSMT).
There are also several interesting features of the spin model

selection. First, in the CHE-dominated universe (second row),
the inference is not able to select the true natal black hole spin
of χb= 0.0, and instead gives approximately equal support to
χb= 0.0, 0.1 and 0.2, as illustrated by the similar heights of the
different colored curves. Let us recall that, while the aligned-
spin CE and SMT field channels mostly produce BBHs with
χeff≈ χb (although CE has a tail for higher spins from tidal
spin-up) and the isotropic-spin GC and NSC dynamical
channels produce BBHs scattered around χeff≈ 0, the CHE
channel uniquely produces BBHs with χeff 0.2 irrespective
of χb, due to strong tidal spin-up effects (see Figure 1). As a
result, the inference is not able to discern between values of χb

Figure 5. The percent decrease in the branching fraction posterior 90%
symmetric credible interval width from 50 to 250 mock detections plotted
against the channelʼs detection efficiency. The black dotted vertical lines mark
which points correspond to which formation channel. While the underlying
branching fractions (solid line) converge faster with Nobs in channels with
higher detection efficiencies, no such correlation is seen in the detectable
branching fractions (dashed line).
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between 0 and the true value 0.2. In the universes dominated by
dynamical formation channels (GC, third row, and NSC, fourth
row), the selection of the true value of χb= 0.0 is less strong,
with non-negligible support for χb= 0.1 as shown by the green
curves. In these universes, most detections have χeff≈ 0, and
χb only affects the width of this distribution, which is a weaker
feature to detect. Additionally, the subpopulation of hierarch-
ical mergers in these channels help to drive the mild support for
χb> 0; at lower values of χb, hierarchical mergers occur more

readily, due to weaker gravitational recoil kicks. Hierarchical
mergers can have |χeff| significantly greater than zero
(Pretorius 2005; González et al. 2007; Buonanno et al. 2008;
Kimball et al. 2020), as illustrated by the wings of the
marginalized χeff distribution for the GC and NSC channels in
Figure 1. Because hierarchical mergers form a larger
subpopulation in NSC, due to their deeper potential wells
and ability to retain post-merger black holes (Miller &
Lauburg 2009; O’Leary et al. 2009; Hong & Lee 2015;

Figure 6. Marginalized branching fraction posteriors inferred from a catalog of 100 mock detections for a universe where the only BBH formation channel is (top to
bottom) CE, CHE, GC, NSC, or SMT. As in the top row of Figure 2, different colored curves represent support for different values of χb marginalized over αCE, while
the dotted black curve gives the total marginalized posterior. We have also included the prior in gray. The vertical lines mark the 90% symmetric credible interval.
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Antonini & Rasio 2016), this effect is greater for the NSC-
dominated universe. Additionally, in the NSC-dominated
universe, the βNSC posterior for χb= 0.1 (green curve) peaks
at a higher value than χb= 0.0 (blue curve). This is because,
when χb= 0.1, field channels produce fewer of the χeff≈ 0
BBHs that make up the bulk of the population.

Finally, although it is not shown in Figure 6, we comment on
the inference on αCE. First, we do favor the true value of
αCE= 1.0 for the CE-dominated channel, preferring it over the
next most favored model with BF 722.0

1.0
CE
CE =a

a
=
= , as expected

from a universe where all detections are from the CE channel.
We also note consistency with the results of Section 3.2 in the
recovery of αCE for universes where there is no contribution
from the CE channel; there is a small bias toward higher values
of αCE. We find BF 1.52, 1.54, 1.68,1.0

1.0
CE
CE =a

a
<
> and 1.58 for the

CHE, GC, NSC, and SMT-dominated universes, respectively.9

4.2. Biases in Spin Inference

To examine the effect of χb on the hyperposterior, we
perform hierarchical inference on different universes with the
same underlying branching fractions but different true values of
χb, using 250 mock detections. To isolate the effect of χb, we
choose an equal mixture of formation channels in the
underlying population (βj= 0.2 for all channels j). We choose
αCE= 1.0.

Figure 7 shows the marginalized branching fraction poster-
iors for universes with χb= 0.0 and χb= 0.2. Consistently
with our results in Section 3.2, we recover the true values of the
branching fractions as well as the true value of χb for both
universes. Here, we can see that the selection of χb is
nonlinear: it is harder to distinguish between lower black hole
spins (i.e., χb= 0.0 versus χb= 0.1 ) and higher ones. While
there is no support for other values of χb in the posterior of the
χb= 0.2 universe, there is still non-negligible support for

χb= 0.1 in the χb= 0.0 universe, with BF 300.1
0.0

b

b =c
c

=
= . This is

as expected; it is difficult to discern between slowly spinning
and nonspinning populations, due to the inherent measurement
uncertainty of GW observations (Baird et al. 2013; Vitale et al.
2014; Pürrer et al. 2016; Vitale et al. 2017a).
Figure 8 shows a corner plot of the branching fraction

posteriors for both universes. Here, we can see the same effect:
despite having the same number of mock detections, the data
are more informative (yielding a posterior more different from
the prior) in the universe with nonzero χb.

Figure 7.Marginalized branching fraction posteriors in the same format as Figure 6, except here the rows show two universes (each with 250 mock observations) with
different true values of χb (0.0, top; and 0.2, bottom). The true values of the branching fractions (βj = 20% for all channels j) are given by the solid vertical lines,
color-coded by the true value of χb.

Figure 8. Corner plot of the branching fraction posteriors for an equal-mixture
universe, with αCE = 1.0 and χb = 0.0 (blue) and 0.2 (pink). Contours
correspond to 50% and 90% credible intervals. The true values of the branching
fractions are marked by the gray lines, while the prior is plotted in black only in
the 1D histograms, for clarity.

9 To be precise, the quantity we calculate is

BF BF BF BF .1.0
2.0
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4.3. Inference with an Incomplete Set of Populations

Finally, we perform hierarchical inference with one forma-
tion channel excluded, such that, while all five channels are
contributing sources, the inference is only performed with four
channels. This analysis is motivated by the fact that any
population analysis done on real BBH data likely does its
inference with an incomplete set of formation channels; we
most likely do not know the totality of all possible BBH
formation channels, nor can we model them all accurately and
self-consistently. We again consider an equal-mixture branch-
ing fraction universe (β= 0.2 between all formation channels)
and true values for our physical prescription of αCE= 1.0 and
χb= 0.2. Figure 9 shows the marginalized branching fraction
posteriors and support for different values of χb for the full
inference as well as for inferences with one channel excluded.
We defer discussion of biases in αCE selection to Appendix B
and instead focus on χb and the formation channel branching
fractions in this section.

By examining which channels receive more or less posterior
support as a result of the inferenceʼs incomplete knowledge of
formation channels, we can infer the correlations between the
branching fractions of different formation channels. For
example, when the CE channel is excluded (second row), the
increase in branching fraction is spread approximately equally
over the other channels, suggesting that βCE is negatively
correlated with the other branching fractions, as is the prior. On
the other hand, when the SMT channel is excluded from the
inference (last row), the βCE posterior shifts toward higher
values, while support for the other channels decreases.

Such correlations are consistent with the branching fraction
corner plot from the full inference (Figure 8); the pink contours
are relevant to the set of mock detections discussed in this
section. The uncertainties in βCE are the greatest of all
channels, and the posterior the least constrained; as such, the
marginalized βCE posterior closely follows the prior. As a
result, βCE is negatively correlated with all channels, which
leads to systematic overestimation when doing inference with a
channel excluded. In general, we can see that some branching
fraction posteriors (i.e., βNSC and βCHE) are constrained much
better than others and are affected the least by the choice of
prior. As seen in Section 4.1, the prior can cause a bias toward
higher values of β for channels with lower detection
efficiencies and greater uncertainties.

Next, we highlight the effect of incomplete formation
channel knowledge on the selection of the natal black hole spin
χb. We see two cases in which the wrong value of χb is
selected. When the CHE channel is excluded (third row), we
infer a high natal black hole spin of χb= 0.5, as indicated by
the yellow curve, with a Bayes factor over the true value
χb= 0.2 of BF 3730.2

0.5
b

b =c
c

=
= . This is due to the high-χeff BBHs

that the CHE channel produces. When the inference does not
account for the CHE channel, it tries to explain these highly
spinning CHE black holes with other field-channel BBHs
spinning at a higher χb. Then, in order to still account for the
lower χeff non-CHE BBHs, the branching fractions for the GC
and SMT channels are increased and decreased, respectively.
We remark that no such adjustment is seen for the NSC and CE
channels, despite them having features in χeff space similar to
those of the GC and SMT channels, respectively.

An opposite effect is seen when excluding the NSC channel
(fifth row), which, as noted above, produces BBHs scattered

around χeff= 0 with tails that extend to more positive and
negative values, due to the presence of hierarchical mergers.
The inference has constructed two competing explanations in
order to explain these lower-spinning BBHs: low-χb CE BBHs
(represented by the green and blue curves with posterior
support for high βCE and low βGC) and higher-χb GC BBHs
(represented by the pink curve with support for low βCE and
high βGC). This highlights the degeneracy between low-
spinning field channels and high-spinning dynamical channels
in producing similar features in the population χeff distribution.
This case is especially remarkable because the green and blue
curves (χb= 0.0 and χb= 0.1 ) for the βCE posterior bear a
striking resemblance to the βCE posterior inferred from GWTC-
3 data (Figure 2), even though these features are purely an
artifact of the inference neglecting a single BBH formation
channel. We again remark on the difference between the βCE
and βSMT posteriors: despite the fact that both CE and SMT are
field channels with the similar features in χeff space, support for
βSMT does not increase (and rather decreases) in the low-χb

model as a result of the exclusion of the NSC channel. One
reason why this may occur is that SMT BBHs cannot go
through tidal spin-up, unlike CE BBHs, and hence they account
for a narrower range of χeff concentrated around χb. Therefore,
βSMT can be strongly affected by the exclusion of a channel
with strong features in χeff space, especially when the wrong
model of χb is inferred.
As mentioned in the previous paragraph, we also find it

noteworthy that the inference favors two separate competing
explanations when NSC is excluded. The GC and NSC
marginalized χeff KDEs are similar due to the isotropy of spin
orientations in these two channels; upon examination of the
marginalized KDEs of the other three BBH parameters ( c , q,
z), the GC channel appears still to have the closest resemblance to
the NSC channel. Despite this, the inference does not simply
overcompensate for the exclusion of the NSC channel by
correspondingly increasing βGC, suggesting the influence of
higher-dimensional features in parameter space. On the other
hand, no such effect is seen when excluding the GC channel,
whose posterior has a simple overcompensation in βNSC and βCE.
Indeed, although we have been able to broadly interpret

these posteriors by focusing on different channels’ features in
χeff space, there must be other subtle effects at play. We have
shown in multiple ways the differences between the βCE and
βSMT posteriors and the βGC and βNSC posteriors, despite
having them similar features in χeff space. Although the
exclusion of each channel has its own unique and interesting
consequences, there appears to be a bias for the CE and GC
channels, systematically underestimating the CHE and NSC
channels. We point again to detection efficiency: of the field
and dynamical channels, respectively, the CE and GC channels
have by far the lowest detection efficiencies. With the uniform
branching fraction spread in our current set of hyperparameters,
only 2% of detections are expected to be from the CE channel
(versus 30% and 16% from the CHE and SMT channels) and
16% from the GC channel (versus 36% from the NSC channel).
Finally, we have repeated this analysis for the set of

hyperparameters used in the convergence analysis in Section 3,
with an unequal mixture of channels and χb= 0.0. In this
universe, the bias toward overestimating βGC is more severe
due to the lack of spin information from our choice of χb.
Consistently with our previous discussion, there again seems to
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be a bias toward the CE and GC channels when one channel is
excluded. Due to the CHE and NSC channels’ high detection
efficiencies, the βCHE and βNSC posteriors support their low

true values (5% for both channels) with small uncertainties.
The corresponding plot of the branching fraction posteriors for
this universe can be found in Appendix B.

Figure 9. Marginalized branching fraction posteriors. The first row shows the results from the full inference in our χb = 0.2, αCE = 1.0 equal branching fraction
universe with Nobs = 250, identical to the second row of Figure 7, while each of the remaining rows shows the result of inference performed without knowledge of one
of the formation channels. The format of this plot is the same as Figures 6 and 7.

12

The Astrophysical Journal, 955:127 (19pp), 2023 October 1 Cheng, Zevin, & Vitale



4.4. Discussion

In this section, we conducted several investigations of
different biases that arise in hierarchical Bayesian inference
based on astrophysical formation models of BBHs. We
summarize the key takeaways as follows:

1. Single-channel dominated universes (Section 4.1)
(a) Even when our models of the underlying formation

channels are perfectly accurate, at Nobs= 100 the data
are still relatively uninformative due to information
loss from parameter estimation and low detection
rates. Thus, results of inference are still influenced by
the choice of a flat prior and exhibit bias toward a
mixture of formation channels. This puts a caveat on
our result from Section 2.2 that no single channel
dominates the underlying BBH population, from the
inference on GWTC-3 data.

(b) It is difficult to precisely infer the true value of αCE,
as it only affects the CE channel, which produces very
few detectable BBHs, due to its low detection
efficiency relative to the other channels considered.
Only with mock catalogs where the CE channel
dominates the detections can we recover the true value
of αCE, as expected.

2. Biases in spin inference (Section 4.2)
(a) It is easier to infer higher values of χb than lower

values. When χb is low (0.0 or 0.1), one has less spin
information, and uncertainties in both the branching
fraction posteriors and the selection of the true value
of χb are greater.

3. Inference with incomplete populations (Section 4.3)
(a) Both the branching fraction posteriors and the inferred

value of χb can be heavily affected if the inference is
performed without knowledge of all contributing
formation channels. Some branching fractions are
overestimated or underestimated by a factor of ∼3 or
more from the exclusion of a formation channel, and
ignoring channels that produce particularly high or
low χeff BBHs can cause the inference to strongly
select an incorrect value of χb.

(b) Degeneracies exist between different sets of hyper-
parameters that can make it difficult for the inference
to discriminate between them. For example, it can be
difficult to distinguish between field BBHs with low
χb and dynamical BBHs with higher χb, due to χeff

being the only spin information used in the inference
(which in turn is due to the fact that χeff is arguably
the only spin parameter that can be measured for all
BBHs with advanced detectors). There are likely more
subtle degeneracies and correlations in higher-dimen-
sional parameter space that are difficult to explain
from the marginalized distributions but nonetheless
play a role in the inference.

(c) Inference on the underlying branching fractions can be
biased due to the varying detection efficiencies of
different channels. In particular, the CE channel has a
detection efficiency nearly an order of magnitude
below the other channels, causing large measurement
uncertainties in βCE and a relatively uninformed (i.e.,
close to the prior) posterior for βCE. As a result, the
exclusion of a channel from the inference usually
results in the βCE posterior support extending to

higher values; similar effects can be seen in other low
detection efficiency channels, such as the GC and
SMT channels.

5. Conclusions

Understanding the physical processes and formation envir-
onments of compact binary mergers is one of the most pressing
questions in GW astrophysics. In this paper, we pair the most
recent catalog of BBH mergers provided by the LVK with an
expansive, self-consistent suite of astrophysical models to
investigate the origins of BBH mergers. Consistent with Zevin
et al. (2021a), we find that, given our set of astrophysical
models, multiple formation channels are likely contributing to
the observed population (though see Section 4.1 for a caveat).
We demonstrate both the predictive power of our inference
methodology and its scaling with future detections by
generated mock observations with realistic measurement
uncertainties from synthetic universes with known branching
fractions and physical prescriptions. Perhaps most importantly,
we also demonstrate the pitfalls of this type of inference, in
particular how an incomplete census of formation models or
incorrect physical assumptions can lead to significant biases in
inference. This work should be treated as a cautionary tale for
those attempting to understand relevant physical processes
leading to compact binary mergers and formation environments
of compact binary progenitors, as inference can be
severely compromised if models suffer from inaccuracies of
incompleteness.
Though the suite of BBH formation channel models used in

this work are state-of-the-art and apply self-consistent physical
treatments where possible, they in many ways can be treated as
exemplary. Given the numerous uncertainties in massive-star
evolution, binary physics, compact object formation, and
environmental effects, it is currently impossible to construct
models with complete physical accuracy or to fully explore all
the uncertainties that impact the source property predictions of
population synthesis. Regardless, the biases demonstrated in
this analysis are a generic concern when performing inference
based on an incomplete or inaccurate set of astrophysical
models. We do not suggest that such studies have no utility;
compared to population inference that rely on heuristic or
flexible models, studies such as these have the benefit of
translating directly to physical constraints, albeit requiring
proper caveats. Despite the potential issues with such analyses,
we anticipate that, given the diversity of BBH properties
observed to date, the key result of multiple formation channels
contributing to the detected population of BBHs remains
robust.
A potential concern one might have when considering

multiple formation channels for the production of BBH
mergers is how the Universe could conspire to have multiple
distinct formation pathways, governed by unique physics, to
contribute to the population of merging BBHs at a similar rate.
Occamʼs razor would suggest that this is an unlikely scenario.
However, astrophysical transients have been shown in many
instances not to obey this principle (Maccarone 2021). Many
channels of BBH formation have predicted rates within the
same order of magnitude (Rodriguez et al. 2021; Broekgaarden
et al. 2022; see Mandel & Broekgaarden 2022 for a review),
and the selection effects inherent to GW detection are certainly
capable of causing sources from intrinsically rare channels to
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be heavily represented in the detected population. Future
observations and improved population synthesis routines may
help to more robustly disentangle the relative rates of various
compact binary formation channels, and thereby have the
capability of placing constraints on underlying physical
processes. Nonetheless, for the time being, we show that it is
important to consider the potential biases that can accumulate
when accounting for an incomplete picture of compact binary
mergers in the universe.

Multiple avenues can be used in tandem with the analyses
presented in this work to help expedite the ability of placing
robust constraints on compact binary formation channels. In
addition to analyses of the full population of BBH mergers,
observational signatures from single events that are unique to
one or a subset of formation channels will help to place
constraints on the relative contribution of various formation
channels (e.g., Zevin et al. 2021b). Observational constraints
from other probes of compact binary formation outside of GW
astronomy, such as electromagnetic surveys of BBH stellar
progenitors, astrometric observations of compact object
binaries, identification and host association of gamma-ray
bursts and kilonovae, and characterization of pulsar binaries in
the Milky Way can all help complement and improve
constraints that rely solely on GW observations. Incorporating
such information into astrophysical inference will help
population analyses using astrophysical simulations remain
pertinent and scale with the rapidly growing catalog of compact
binary merger observations.

The posterior samples in the analyses presented in this work,
the code for calculating the prior at the posterior points (see
Appendix A), and all figures, along with additional figures and
the accompanying Jupyter notebook, are available on Zenodo
(Cheng 2023).
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Appendix A
Calculating the Prior at the Posterior Points

During hierarchical inference, the goal is to calculate the
hyperposterior for our hyperparameters Λ= [β, χb, αCE]
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is the hyperlikelihood (see Appendix D of Zevin et al. 2021a,
as well as Farr et al. 2015, Mandel et al. 2019, and Vitale et al.
2022b for reviews). Here, we divide out the parameter
estimation prior π(θ) evaluated at each point θi as we integrate
over the space of BBH parameters q z, , ,c eff[ ]q c= . We
approximate this integral via a Monte Carlo discrete sum over
the posterior samples. Therefore, it is necessary to calculate the
prior at each posterior sample point.
Zevin et al. (2021a) did this by constructing a four-

dimensional Gaussian-kernel KDE with the prior samples in
the GWTC-1 and GWTC-2 data releases. Due to the potentially
prohibitive behavior of high-dimensional KDEs with insuffi-
cient training samples, we choose instead to evaluate the prior
at each posterior sample analytically by using the analytical
priors from the GWTC-2.1 and GWTC-3 data releases and
applying the appropriate Jacobians (see Callister 2021, for a
review).
Figure 10 shows the marginalized branching fraction

posteriors inferred from GWTC-2.1 and GWTC-3 data, but
with the prior i

k( )p q for each event i evaluated at each posterior
sample k calculated via a four-dimensional Gaussian KDE
constructed from the prior samples provided from LVK data
releases, as in Zevin et al. (2021a). Comparing with Figure 2,
determining i

k( )p q in this way gives rise to some noisy features
in the posterior, such as nontrivial support for χb= 0.2 and
χb= 0.5 (pink and yellow curves, respectively). While there is
no support for χb> 0.1 with analytical evaluation of the prior,
with the KDE method we have BF 4.000.1

0.1
b

b =c
c

> . Similarly,
preference between different values of αCE is also weaker, with
BF 4.241.0

5.0
CE
CE =a

a
=
= , as opposed to 249. The primary notable

features in the posterior as discussed in Section 2.2, however,
still remain robust.
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Appendix B
Additional Figures

In this appendix, we show additional plots (Figures 11–14).
Details are given in each figureʼs caption.

Figure 10. The same as Figure 2, showing the marginalized branching fractions inferred from 68 events in the cumulative GWTC-3 catalog, but with the prior at the
posterior points evaluated with a KDE, rather than analytically.

Figure 11. The same as Figure 2, except here we show detectable branching fractions inferred from GWTC-2.1 and GWTC-3 data rather than underlying branching
fractions.
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Figure 12. The same as Figure 3 (top, underlying branching fractions) and Figure 4 (bottom, detectable branching fractions), showing the convergence of the
posteriors with Nobs, except in this universe we have β = 20% across all channels, as well as χb = 0.2 and αCE = 1.0. As in Figures 3 and 4, the empty plots (middle
column) represent the lack of support for the χb = 0.0 model, while the populated plots corresponding to αCE = 0.5 (right column) show that the inference does not
significantly favor the true value of αCE = 1.0.
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Figure 13. The same as Figure 9, showing the marginalized branching fraction posteriors as a single channel is excluded from the inference, except in this universe we
have unequal branching fractions, χb = 0.0, and αCE = 1.0. We also use Nobs = 250 for this analysis.
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